BETA

Математика : Геометрия

76 / 301
Записей показано: 76, всего в разделе «Математика»: 301

Содер­жа­ние руб­рики: осно­ва­ния геомет­рии и ее стро­е­ние, неев­кли­довы геомет­рии, геомет­рия прямых и кри­вых, много­уголь­ники и многогран­ники, геомет­ри­че­ские пре­об­ра­зо­ва­ния и постро­е­ния, исто­рия геомет­рии, задачи и реше­ния.


Александров П. С. Что такое неевклидова геометрия. — 1950  Александров П. С. Что такое неевклидова геометрия. — М. : Изд-во АПН РСФСР, 1950. — 72 с., [1] л. портр.Андронов И. К., Окунев А. К. Курс тригонометрии, развиваемый на основе реальных задач. — 1967  Андронов И. К., Окунев А. К. Курс тригонометрии, развиваемый на основе реальных задач : пособие для учителей. — 2-е изд., доп. — М. : Просвещение, 1967. — 648 с. — Библиогр.: с. 14 (11 назв.).Аргунов Б. И., Скорняков Л. А. Конфигурационные теоремы. — 1957  Аргунов Б. И., Скорняков Л. А. Конфигурационные теоремы. — М. : Гос. изд-во технико-теорет. лит., 1957. — 40 с. — (Популярные лекции по математике ; вып. 24). — Список лит.: с. 39 (7 назв.).Бакельман И. Я. Инверсия. — 1966  Бакельман И. Я. Инверсия. — М. : Наука, 1966. — 80 с. — (Популярные лекции по математике ; вып. 44).Беккер Б. М., Некрасов В. Б. Применение векторов для решения задач. — 2002  Беккер Б. М., Некрасов В. Б. Применение векторов для решения задач : [учебное пособие по математике для учащихся 8—11 классов]. — [2-е изд., испр.]. — СПб. : СМИО Пресс, 2002. — 88 с. — Библиогр.: с. 86 (6 назв.).Белый Е. К. Вредная геометрия. — 2017  Белый Е. К. Вредная геометрия : учебное пособие для учащихся средних школ / Петрозавод. гос. ун-т. — Петрозаводск : Изд-во ПетрГУ, 2017. — 36 с. — (Математика не для ЕГЭ). — Библиогр.: с. 33 (4 назв.).Берман Г. Н. Циклоида. — 1954  Берман Г. Н. Циклоида : об одной замечательной кривой линии и некоторых других, с ней связанных. — 2-е изд., [испр.]. — М. : Гостехиздат, 1954. — 116 с.Бескин Н. М. Деление отрезка в данном отношении. — 1973  Бескин Н. М. Деление отрезка в данном отношении. — М. : Наука, 1973. — 64 с. — (Популярные лекции по математике ; вып. 52).Бескин Н. М. Изображения пространственных фигур. — 1971  Бескин Н. М. Изображения пространственных фигур. — М. : Наука, 1971. — 80 с. — (Популярные лекции по математике ; вып. 51). — Библиогр.: с. 80 (6 назв.).Билецкий Ю. А., Филипповский Г. Б. Чертежи на песке: в мире геометрии Архимеда. — 2000  Билецкий Ю. А., Филипповский Г. Б. Чертежи на песке : в мире геометрии Архимеда. — Киев : Факт, 2000. — 100 с. — Лит.: с. 99 (11 назв.).Болтянский В. Г., Гохберг И. Ц. Разбиение фигур на меньшие части. — 1971  Болтянский В. Г., Гохберг И. Ц. Разбиение фигур на меньшие части. — М. : Наука, 1971. — 88 с. — (Популярные лекции по математике ; вып. 50).Болтянский В. Г. Огибающая. — 1961  Болтянский В. Г. Огибающая. — М. : Физматгиз, 1961. — 76 с. — (Популярные лекции по математике ; вып. 36).Болтянский В. Г. Равновеликие и равносоставленные фигуры. — 1956  Болтянский В. Г. Равновеликие и равносоставленные фигуры. — М. : Гостехиздат, 1956. — 64 с. — (Популярные лекции по математике ; вып. 22). — Список лит.: с. 4 (8 назв.).Вавилов В. В., Устинов А. В. Многоугольники на решетках. — 2006  Вавилов В. В., Устинов А. В. Многоугольники на решетках. — М. : МЦНМО, 2006. — 72 с. — (Секреты преподавания математики). — Библиогр.: с. 66—69 (51 назв.).Варданян С. С. Задачи по планиметрии с практическим содержанием. — 1989  Варданян С. С. Задачи по планиметрии с практическим содержанием : кн. для учащихся 6—8 классов средней школы / под ред. В. А. Гусева. — М. : Просвещение, 1989. — 144 с.Васильев Н. Б., Гутенмахер В. Л. Прямые и кривые. — 2006  Васильев Н. Б., Гутенмахер В. Л. Прямые и кривые. — 6-е изд., стер. — М. : МЦНМО, 2006. — 128 с. — (Библиотечка Всероссийской заочной математической школы).Вейль Г. Симметрия. — 1968  Вейль Г. Симметрия / пер. с англ. Б. В. Бирюкова и Ю. А. Данилова ; под ред. Б. А. Розенфельда. — М. : Наука, 1968. — 192 с., [1] л. портр. — Библиогр. в прим. и в конце сопроводит. статей.Веннинджер М. Модели многогранников. — 1974  Веннинджер М. Модели многогранников / пер. с англ. В. В. Фирсова ; под ред. и с послесл. И. М. Яглома. — М. : Мир, 1974. — 240 с. — Лит.: с. 228—229 (37 назв.).Воронец А. М. Геометрия циркуля. — 1934  Воронец А. М. Геометрия циркуля. — М. ; Л. : ОНТИ, 1934. — 40 с. — (Популярная библиотека по математике / под общ. ред. Л. А. Люстерника).Гильберт Д. Основания геометрии. — 1923  Гильберт Д. Основания геометрии / пер. с 5-го нем. изд. под ред. заслуж. проф. А. В. Васильева ; [примеч. О. А. Вольберга]. — Пг. : Сеятель, 1923. — XXXII, 152 с. — (Библиотека современной математики / под ред. акад. Я. В. Успенского). — Библиогр. в примеч.
Про­должая исполь­зо­вать дан­ный сайт, вы выража­ете согла­сие с усло­ви­ями его исполь­зо­ва­ния